Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 42, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168091

RESUMO

To curb viral epidemics and pandemics, antiviral drugs are needed with activity against entire genera or families of viruses. Here, we develop a cell-based multiplex antiviral assay for high-throughput screening against multiple viruses at once, as demonstrated by using three distantly related orthoflaviviruses: dengue, Japanese encephalitis and yellow fever virus. Each virus is tagged with a distinct fluorescent protein, enabling individual monitoring in cell culture through high-content imaging. Specific antisera and small-molecule inhibitors are employed to validate that multiplexing approach yields comparable inhibition profiles to single-virus infection assays. To facilitate downstream analysis, a kernel is developed to deconvolute and reduce the multidimensional quantitative data to three cartesian coordinates. The methodology is applicable to viruses from different families as exemplified by co-infections with chikungunya, parainfluenza and Bunyamwera viruses. The multiplex approach is expected to facilitate the discovery of broader-spectrum antivirals, as shown in a pilot screen of approximately 1200 drug-like small-molecules.


Assuntos
Viroses , Vírus , Humanos , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Técnicas de Cultura de Células , Replicação Viral
2.
Eur J Med Chem ; 264: 116010, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104375

RESUMO

The worldwide re-emerge of the Chikungunya virus (CHIKV), the high morbidity associated with it, and the lack of an available vaccine or antiviral treatment make the development of a potent CHIKV-inhibitor highly desirable. Therefore, an extensive lead optimization was performed based on the previously reported CHVB compound 1b and the reported synthesis route was optimized - improving the overall yield in remarkably shorter synthesis and work-up time. Hundred analogues were designed, synthesized, and investigated for their antiviral activity, physiochemistry, and toxicological profile. An extensive structure-activity relationship study (SAR) was performed, which focused mainly on the combination of scaffold changes and revealed the key chemical features for potent anti-CHIKV inhibition. Further, a thorough ADMET investigation of the compounds was carried out: the compounds were screened for their aqueous solubility, lipophilicity, their toxicity in CaCo-2 cells, and possible hERG channel interactions. Additionally, 55 analogues were assessed for their metabolic stability in human liver microsomes (HLMs), leading to a structure-metabolism relationship study (SMR). The compounds showed an excellent safety profile, favourable physicochemical characteristics, and the required metabolic stability. A cross-resistance study confirmed the viral capping machinery (nsP1) to be the viral target of these compounds. This study identified 31b and 34 as potent, safe, and stable lead compounds for further development as selective CHIKV inhibitors. Finally, the collected insight led to a successful scaffold hop (64b) for future antiviral research studies.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Células CACO-2 , Antivirais/química , Pirimidinas/farmacologia , Febre de Chikungunya/tratamento farmacológico , Replicação Viral
3.
J Infect ; 87(6): 524-537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852477

RESUMO

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Animais , Haplorrinos
4.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581931

RESUMO

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.


Assuntos
COVID-19 , Hepatite C Crônica , Animais , Humanos , Camundongos , Antivirais/farmacologia , Citocinas , Inflamação/tratamento farmacológico , Lapatinib/farmacologia , SARS-CoV-2
5.
Microorganisms ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985290

RESUMO

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication.

6.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159337

RESUMO

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.

7.
Antiviral Res ; 210: 105506, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565756

RESUMO

Massive efforts on both vaccine development and antiviral research were launched to combat the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We contributed, amongst others, by the development of a high-throughput screening (HTS) antiviral assay against SARS-CoV-2 using a fully automated, high-containment robot system. Here, we describe the development of this novel, convenient and phenotypic dual-reporter virus-cell-based high-content imaging assay using the A549+hACE2+TMPRSS2_mCherry reporter lung carcinoma cell line and an ancestral SARS-CoV-2_Wuhan_mNeonGreen reporter virus. Briefly, by means of clonal selection, a host cell subclone was selected that (i) efficiently supports replication of the reporter virus with high expression, upon infection, of the NeonGreen fluorescent reporter protein, (ii) that is not affected by virus-induced cytopathogenic effects and, (iii) that expresses a strong fluorescent mCherry signal in the nucleus. The selected clone matched these criteria with an infection rate on average of 75% with limited cell death. The average (R)Z'-factors of the assay plates were all >0.8, which indicates a robust assay suitable for HTS purposes. A selection of reference compounds that inhibits SARS-CoV-2 replication in vitro were used to validate this novel dual-reporter assay and confirms the data reported in the literature. This assay is a convenient and powerful tool for HTS of large compound libraries against SARS-CoV-2.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , Ensaios de Triagem em Larga Escala/métodos , SARS-CoV-2 , Descoberta de Drogas , Replicação Viral
8.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293531

RESUMO

The yellow fever virus (YFV) is an emerging RNA virus and has caused large outbreaks in Africa and Central and South America. The virus is often transmitted through infected mosquitoes and spreads from area to area because of international travel. Being an acute viral hemorrhagic disease, yellow fever can be prevented by an effective, safe, and reliable vaccine, but not be eliminated. Currently, there is no antiviral drug available for its cure. Thus, two series of novel bis(benzofuran−1,3-imidazolidin-4-one)s and bis(benzofuran−1,3-benzimidazole)s were designed and synthesized for the development of anti-YFV lead candidates. Among 23 new bis-conjugated compounds, 4 of them inhibited YFV strain 17D (Stamaril) on Huh-7 cells in the cytopathic effect reduction assays. These conjugates exhibited the most compelling efficacy and selectivity with an EC50 of <3.54 µM and SI of >15.3. The results are valuable for the development of novel antiviral drug leads against emerging diseases.


Assuntos
Benzofuranos , Medicamentos Sintéticos , Vacina contra Febre Amarela , Animais , Vírus da Febre Amarela , Medicamentos Sintéticos/farmacologia , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzimidazóis/farmacologia
9.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886992

RESUMO

Chikungunya virus (CHIKV) has repeatedly spread via the bite of an infected mosquito and affected more than 100 countries. The disease poses threats to public health and the economy in the infected locations. Many efforts have been devoted to identifying compounds that could inhibit CHIKV. Unfortunately, successful clinical candidates have not been found yet. Computations through the simulating recognition process were performed on complexation of the nsP3 protein of CHIKV with the structures of triply conjugated drug lead candidates. The outcomes provided the aid on rational design of functionalized quinazoline-(α-substituted coumarin)-arylsulfonate compounds to inhibit CHIKV in Vero cells. The molecular docking studies showed a void space around the ß carbon atom of coumarin when a substituent was attached at the α position. The formed vacancy offered a good chance for a Michael addition to take place owing to steric and electronic effects. The best conjugate containing a quinazolinone moiety exhibited potency with EC50 = 6.46 µM, low toxicity with CC50 = 59.7 µM, and the selective index (SI) = 9.24. Furthermore, the corresponding 4-anilinoquinazoline derivative improved the anti-CHIKV potency to EC50 = 3.84 µM, CC50 = 72.3 µM, and SI = 18.8. The conjugate with 4-anilinoquinazoline exhibited stronger binding affinity towards the macro domain than that with quinazolinone via hydrophobic and hydrogen bond interactions.


Assuntos
Vírus Chikungunya , Animais , Antivirais/química , Sulfonatos de Arila/metabolismo , Sulfonatos de Arila/farmacologia , Chlorocebus aethiops , Desenho Assistido por Computador , Cumarínicos/farmacologia , Simulação de Acoplamento Molecular , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Quinazolinonas/farmacologia , Células Vero , Replicação Viral
10.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35879526

RESUMO

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Haplorrinos , Humanos , Glicoproteínas de Membrana , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
11.
Sci Data ; 9(1): 405, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831315

RESUMO

Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos
12.
Antiviral Res ; 202: 105311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390430

RESUMO

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por HIV , Inibidores da Protease de HIV , Animais , Cricetinae , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Pulmão , Mesocricetus , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , RNA Viral , Ritonavir/uso terapêutico , SARS-CoV-2
13.
J Med Virol ; 94(7): 3101-3111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35229317

RESUMO

Although vaccines are currently used to control the coronavirus disease 2019 (COVID-19) pandemic, treatment options are urgently needed for those who cannot be vaccinated and for future outbreaks involving new severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) strains or coronaviruses not covered by current vaccines. Thus far, few existing antivirals are known to be effective against SARS-CoV-2 and clinically successful against COVID-19. As part of an immediate response to the COVID-19 pandemic, a high-throughput, high content imaging-based SARS-CoV-2 infection assay was developed in VeroE6 African green monkey kidney epithelial cells expressing a stable enhanced green fluorescent protein (VeroE6-eGFP cells) and was used to screen a library of 5676 compounds that passed Phase 1 clinical trials. Eight drugs (nelfinavir, RG-12915, itraconazole, chloroquine, hydroxychloroquine, sematilide, remdesivir, and doxorubicin) were identified as inhibitors of in vitro anti-SARS-CoV-2 activity in VeroE6-eGFP and/or Caco-2 cell lines. However, apart from remdesivir, toxicity and pharmacokinetic data did not support further clinical development of these compounds for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Células CACO-2 , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala , Pandemias
14.
Molecules ; 27(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164317

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure-activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Compostos Heterocíclicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Células Vero
15.
Antiviral Res ; 198: 105252, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085683

RESUMO

We assessed the in vitro antiviral activity of remdesivir and its parent nucleoside GS-441524, molnupiravir and its parent nucleoside EIDD-1931 and the viral protease inhibitor nirmatrelvir against the ancestral SARS-CoV2 strain and the five variants of concern including Omicron. VeroE6-GFP cells were pre-treated overnight with serial dilutions of the compounds before infection. The GFP signal was determined by high-content imaging on day 4 post-infection. All molecules have equipotent antiviral activity against the ancestral virus and the VOCs Alpha, Beta, Gamma, Delta and Omicron. These findings are in line with the observation that the target proteins of these antivirals (respectively the viral RNA dependent RNA polymerase and the viral main protease Mpro) are highly conserved.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/uso terapêutico , Lactamas/uso terapêutico , Leucina/uso terapêutico , Nitrilas/uso terapêutico , Prolina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/uso terapêutico , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Animais , Linhagem Celular , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Citidina/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Células Vero , Replicação Viral/efeitos dos fármacos
16.
Cell Rep ; 37(2): 109814, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599871

RESUMO

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Assuntos
Anticorpos Amplamente Neutralizantes/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Testes de Neutralização , Ligação Proteica/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Relação Estrutura-Atividade , Vacinação
18.
EBioMedicine ; 72: 103595, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34571361

RESUMO

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Assuntos
Amidas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/uso terapêutico , Pulmão/virologia , Pirazinas/uso terapêutico , Amidas/farmacologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/transmissão , Citidina/farmacologia , Citidina/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Hidroxilaminas/farmacologia , Mesocricetus , Pirazinas/farmacologia , RNA Viral , Resultado do Tratamento , Carga Viral
19.
Antiviral Res ; 195: 105177, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517053

RESUMO

Vapendavir is a rhino/enterovirus inhibitor that targets a hydrophobic pocket in the viral capsid preventing the virus from entering the cell. We set out to study and compare the molecular mechanisms of resistance to vapendavir among clinically relevant Picornavirus species. To this end in vitro resistance selection of drug-resistant isolates was applied in rhinovirus 2 and 14, enterovirus-D68 and Poliovirus 1 Sabin. Mutations in the drug-binding pocket in VP1 (C199R/Y in hRV14; I194F in PV1; M252L and A156T in EV-D68), typical for this class of compounds, were identified. Interestingly, we also observed mutations located outside the pocket (K167E in EV-D68 and G149C in hRV2) that contribute to the resistant phenotype. Remarkably, the G149C substitution rendered the replication of human rhinovirus 2 dependent on the presence of vapendavir. Our data suggest that the binding of vapendavir to the capsid of the G149C isolate may be required to stabilize the viral particle and to allow efficient dissemination of the virus. We observed the dependency of the G149C isolate on other compounds of this class, suggesting that this phenotype is common for capsid binders. In addition the VP1 region containing the G149C substitution has not been associated with antiviral resistance before. Our results demonstrate that the phenotype and genotype of clinically relevant vapendavir-resistant picornavirus species is more complex than generally believed.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Picornaviridae/efeitos dos fármacos , Picornaviridae/genética , Replicação Viral/efeitos dos fármacos , Animais , Capsídeo/efeitos dos fármacos , Linhagem Celular , Efeito Citopatogênico Viral , Genótipo , Haplorrinos , Células HeLa , Humanos , Mutação , Fenótipo
20.
Antiviral Res ; 193: 105127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217752

RESUMO

In this study, a series of 10 quinoline analogues was evaluated for their in vitro antiviral activity against a panel of alpha- and beta-coronaviruses, including the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2), as well as the human coronaviruses (HCoV) 229E and OC43. Chloroquine and hydroxychloroquine were the most potent with antiviral EC50 values in the range of 0.12-12 µM. Chloroquine displayed the most favorable selectivity index (i.e. ratio cytotoxic versus antiviral concentration), being 165 for HCoV-OC43 in HEL cells. Potent anti-coronavirus activity was also observed with amodiaquine, ferroquine and mefloquine, although this was associated with substantial cytotoxicity for mefloquine. Primaquine, quinidine, quinine and tafenoquine only blocked coronavirus replication at higher concentrations, while piperaquine completely lacked antiviral and cytotoxic effects. A time-of-addition experiment in HCoV-229E-infected HEL cells revealed that chloroquine interferes with viral entry at a post-attachment stage. Using confocal microscopy, no viral RNA synthesis could be detected upon treatment of SARS-CoV-2-infected cells with chloroquine. The inhibition of SARS-CoV-2 replication by chloroquine and hydroxychloroquine coincided with an inhibitory effect on the autophagy pathway as visualized by a dose-dependent increase in LC3-positive puncta. The latter effect was less pronounced or even absent with the other quinolines. In summary, we showed that several quinoline analogues, including chloroquine, hydroxychloroquine, amodiaquine, ferroquine and mefloquine, exhibit broad anti-coronavirus activity in vitro.


Assuntos
Antimaláricos/farmacologia , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Chlorocebus aethiops , Cloroquina/farmacologia , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Humanos , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...